Minimal Dominating Set Enumeration
نویسندگان
چکیده
Let G be a graph on n vertices and m edges. An edge is written xy (equivalently yx). A dominating set in G is a set of vertices D such that every vertex of G is either in D or is adjacent to some vertex of D. It is said to be minimal if it does not contain any other dominating set as a proper subset. For every vertex x let N [x] be {x} ∪ {y | xy ∈ E}, and for every S ⊆ V let N [S] := ⋃ x∈S N [x]. For S ⊆ V and x ∈ S we call any y ∈ N [x] \ N [S \ x] a private neighbor of x with respect to S. The set of minimal dominating sets of G is denoted by D(G). We are interested in an output-polynomial algorithm for enumerating D(G), i.e., listing, without repetitions, all the elements of D(G) in time bounded by p(n+m, ∑
منابع مشابه
On the Enumeration of Minimal Dominating Sets and Related Notions
A dominating set D in a graph is a subset of its vertex set such that each vertex is either in D or has a neighbour in D. In this paper, we are interested in an output-sensitive enumeration algorithm of (inclusionwise) minimal dominating sets in graphs, called Dom problem. It was known that this problem can be polynomially reduced to the well known Transversal problem in hypergraphs. We show th...
متن کاملEnumeration of Minimal Dominating Sets and Variants
In this paper, we are interested in the enumeration of minimal dominating sets in graphs. A polynomial delay algorithm with polynomial space in split graphs is presented. We then introduce a notion of maximal extension (a set of edges added to the graph) that keeps invariant the set of minimal dominating sets, and show that graphs with extensions as split graphs are exactly the ones having chor...
متن کاملOn the Enumeration and Counting of Minimal Dominating sets in Interval and Permutation Graphs
We reduce (in polynomial time) the enumeration of minimal dominating sets in interval and permutation graphs to the enumeration of paths in DAGs. As a consequence, we can enumerate in linear delay, after a polynomial time pre-processing, minimal dominating sets in interval and permutation graphs. We can also count them in polynomial time. This improves considerably upon previously known results...
متن کاملGenerating All Minimal Edge Dominating Sets with Incremental-Polynomial Delay
For an arbitrary undirected simple graph G with m edges, we give an algorithm with running time O(m|L|) to generate the set L of all minimal edge dominating sets of G. For bipartite graphs we obtain a better result; we show that their minimal edge dominating sets can be enumerated in time O(m|L|). In fact our results are stronger; both algorithms generate the next minimal edge dominating set wi...
متن کاملBelow all subsets for Minimal Connected Dominating Set
A vertex subset S in a graph G is a dominating set if every vertex not contained in S has a neighbor in S. A dominating set S is a connected dominating set if the subgraph G[S] induced by S is connected. A connected dominating set S is a minimal connected dominating set if no proper subset of S is also a connected dominating set. We prove that there exists a constant ǫ > 10 such that every grap...
متن کاملOn the Neighbourhood Helly of Some Graph Classes and Applications to the Enumeration of Minimal Dominating Sets
We prove that line graphs and path graphs have bounded neighbourhood Helly. As a consequence, we obtain output-polynomial time algorithms for enumerating the set of minimal dominating sets of line graphs and path graphs. Therefore, there exists an output-polynomial time algorithm that enumerates the set of minimal edge-dominating sets of any graph.
متن کامل